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LElTER TO THE EDITOR 

Multifragmentation: nuclei break up like percolation clusters 

Xavier Campi 
Division de Physique Theoriquet, Institut de Physique Nucltaire, Universitt Paris-Sud, 
91406 Orsay Cedex, France 

Received 4 July 1986 

Abstract. The moments of the cluster size distribution are studied for single events in a 
finite-size percolation model and in multifragmentation of atomic nuclei. It is shown that 
both systems break up in roughly the same way. 

Atomic nuclei break into lighter nuclei when hit by energetic projectiles. The number 
and size of nuclear fragments depend on the energy of the collision. When projectile 
and target interact weakly one observes experimentally one large target residue, plus 
some very light fragments. When the interaction is strong, there is no large residue 
but various light and medium size fragments. In very violent collisions, one even sees 
a complete disintegration of nuclei into free nucleons (Hufner 1985). 

The evolution of the fragment’s mass distribution recalls qualitatively that of 
percolation phenomena (Stauff er 1985). In fact, percolation models have already been 
proposed (Bauer et a1 1985, Campi and Desbois 1985) to describe fragment mass 
distributions produced in inclusive experiments. (In inclusive experiments, data from 
all types of collisions are recorded, regardless of the energy displayed in the collision.) 
The physical picture that supports that interpretation is the following: before the 
collision takes place, the nucleons of the target form a single connected cluster. Each 
nucleon is a site, which is bounded by a few neighbouring nucleons. During the 
collision, projectile and target interpenetrate and a cascade of nucleon-nucleon col- 
lisions develops. Recoil nucleons are ejected out of the nuclear volume and nucleon- 
nucleon bonds are broken. The degree of damage produced in the target depends on 
the kinetic energy of the projectile and the overlap of the projectile with the target. 
Nucleons that remain in a finite nuclear volume form clusters that can be observed as 
bound nuclei. In practice, the realisation of such ideas in a concrete nuclear percolation 
model requires a detailed description of the collision dynamics, as well as a careful 
definition of the model space and linkage conditions. In particular, the relation between 
the concentration parameter p in percolation and standard measurable quantities in 
nuclear physics is very delicate to handle. 

The relevance of percolation ideas in nuclear fragmentation can be investigated 
better by examining cross relations between various moments of the fragment size 
distribution. We show in this letter that experimental data have strong similarities 
with the predictions of finite-size percolation models. 

The standard method used in condensed matter physics to determine the nature 
of a critical phenomenon in an infinite system is to look at critical exponents. For 
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many physical systems it is possible to measure a set of exponents allowing the 
classification into a definite class of phenomena (liquid-gas phase transition, percola- 
tion, etc) (Domb and Green 1972-6). We recall first a few basic concepts and formulae. 

The moments of the cluster size distribution 

M k ( E ) = z  S k ? l ( S ,  E )  ( 1 )  

Mk a E-’*. (2) 

diverge for k > 1 at critical points E = 0, with critical exponents 

In formula ( l ) ,  n(s ,  E )  is the mean number of clusters of size s at fixed small E = p  - p c  
or T,- T. The sum runs over all finite-size clusters. We recall, for instance, that 

M 2 a  (3) 
where y is a critical exponent. 

In general 
pk = -( 7- 1 - k ) / a  (4) 

assuming the scaling property (Stauff er 1985) 

n(s ,  E )  - s--7f(Es‘) 

where T and U are two critical exponents. We recall in passing that MO (the mean 
number of clusters) and M ,  (the mean size) do not diverge at critical points. 

The critical behavioui of the size of the largest (infinite) cluster defines another 
exponent p : 

p ( E ) a  E @  ( 6 )  

{ ( E )  a & - ( y + P ) .  (7)  

for E > 0. When E < 0, no infinite cluster exists, but we can still study the size of the 
typical finite cluster: 

We discuss now how to handle these ideas in the nucleus break-up problem. 
Formulae (1)-(7) cannot be directly applied because we ignore how to classify the 
experimental events according to p - p c  or T, - T. In addition, we have to keep in 
mind that nuclei are very small systems, for which the above relations can only be 
qualitatively fulfilled. 

The experimental data we analyse (Waddington and Freier 1985) consist of about 
400 collision events, in which gold nuclei (formed by N = 118 neutrons plus 2 = 79 
protons) break up into lighter fragments. Event by event, the size (in fact, the charge 
2)  of all fragments has been measured. There is no model-independent way to classify 
the events with respect to p c  or T,. This means that we cannot define an averaged 
multiplicity n(s ,  E )  for fixed E .  We avoid this difficulty studying the moments’ 
distribution of single events: 

where m’(s) = 0, 1 , 2 , .  . . , is the number of fragments of size s that appear in the event 
j .  Here the sum runs over all fragments, excluding the heaviest one produced in the 
event. It is more natural to work with normalised moments 

M i  = E  skm’(s) (8) 

(9) 
Of course, in our finite system, the moments remain finite, even for k >  1.  However, 
if the system keeps some trace of critical behaviour, for some particular events S’, 

sj k - - Mi/ M { .  
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should be much larger than the average. More qualitatively, we can check if the system 
still behaves approximately like (3) and (4), plotting In S i  against In Si.  (for k, k’> 1). 
A linear and strong correlation between the j points would mean a positive answer. 

Figure 1 shows the correlation for S{ against Si. In ( a )  the nuclear fragmentation 
events are shown. In (b), each point is a Monte Carlo simulation of a simple cubic 
lattice bond percolation model containing about the same number of sites as nucleons 
in our breaking nucleus (A = 63). The values of p are randomly distributed between 
0 and 1. Events close to the critical region are represented by points with the largest 
values of S3 and S2. Above and below the critical zone, points fall closer to the origin. 
In nuclei break-up, gentle and violent events fall near the origin. ‘Critical’ events, 
corresponding to break up into two or three medium size fragments, again give the 
largest S,. 

We remark in figure 1 that the points are well correlated, in nuclei as well as in 
the percolation model. This is quite unexpected for such small systems. In addition, 
if we believe that formulae (3) and (4) still make sense, the slope A312 of the straight 
line is related to the critical exponents by 

A312 = 1 + l/my. (10) 

We see that the slope is about the same for the nuclear data as for the percolation 
simulation: A312 = 2.22 f 0.1. This number is to be compared with A312 = 2.25 in infinite 
percolation models (Stauffer 1985). In contrast, A312 = 2.5 for liquid-gas phase transi- 
tions in the mean-field approximation and A312 = 3 for percolation on the Bethe lattice. 
We recall that most calculations of nuclear fragmentation are performed in a mean-field 
approximation (Goodman et a1 1984). 

We also remark in figure 1 on a slight change in the slope of the straight line defined 
by the most ‘critical’ events. This is visible in both nuclear and percolation events, 
although more marked in the former. We believe that this is a manifestation of the 
finite size of the system, but this calls for closer investigation. 

The validity of the general expression (4), which follows from the scaling hypothesis 
(5), can be checked comparing higher moments. This is done in figure 2 for S5 plotted 

l n  Sz 

Figure 1. Single event moments S< plotted against S{ for nucleus break up ( a )  and for a 
Monte Carlo simulation in a cubic bond percolation model contaioing 216 sites and 
randomly distributed values of 0 < p < 1 (6). 
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Figure 2. Same as figure 1 for S i  and S:. See text for the curious correlation near the origin. 

against S 2 .  We see that in both systems the slope A5,,=4.6*0.2, in agreement with 
the prediction 4.75 of (4) taking T = 2.2, the standard value in three-dimensional 
percolation. The value predicted in the mean-field approximation for a liquid-gas 
phase transition is = 5.5 taking T = 7/3. The intriguing points that draw an arc of 
a circle close to the origin are events with only s = I and s = 2 clusters contributing to 
S, ,  i.e. very gentle ( p  = 1) and very violent ( p  = 0) ones. 

Finally we study the ‘critical’ behaviour (6) and (7) of the ‘infinite’ and ‘typical’ 
clusters which we identify in our finite-size systems with the largest cluster produced 
in the event. Plotting the size of that cluster against S2 we get a much weaker correlation 
than before. This lack of correlation is due to the large fluctuations of P and s’ in our 
small systems. A remedy is to average over events of the same type, e.g. averaging 
over events with the same SI .  (We have checked in the percolation model that SI is 
a regular decreasing function of p ,  particularly for p > p c  .) The result is shown in 
figure 3, where the points represent average values of two or more events. We remark 
again that the nucleus and percolation models give about the same correlations. One 
clearly distinguishes two branches. The upper one concerns events with p > p c .  From 
(3) and (6) the predicted slope is - p /  y, i.e. too small to be measured accurately. The 
lower branch represents events below pc for which the size of the largest cluster may 
be governed by (7). The observed slope A = 1.2+0.1 has the predicted value in 
percolation A = 1 + p /  y = 1.2 ( A  = 1.5 in the mean-field approximation). 

In summary, the moments of cluster size distributions in individual events are 
strongly correlated. This is true even in very small systems containing only a few 
hundred particles or sites. Correlations appear to be about the same in a heavy nucleus 
break up as in a finite-size standard percolation model. When these correlations are 
interpreted as remanents of critical phenomena, the deduced values of critical exponents 
are very similar and close to those of percolation for infinite systems, and different 
from the mean-field approximation. 

The use of single event moments seems to be a powerful method for finding critical 
exponents when data cannot be ordered according to p - p c  or to T, - T. When applied 
to nuclear physics, this method provides a model-independent way of analysing the 
complicated data coming from the new exclusive multifragmentation experiments. 
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Figure 3. The size of the largest cluster produced per event as a function of S2.  Each 
point represents the average over events with same S, . ( a )  Largest nuclear fragment charge. 
The average is over 376 events. ( b )  Largest cluster size in a cubic bond percolation model 
containing 216 sites and for randomly distributed values of O < p  < 1. The average is over 
4000 events. Only the slopes of the curves can be compared because of different system sizes. 
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